60,517 research outputs found

    Changes in Dark Matter Properties After Freeze-Out

    Full text link
    The properties of the dark matter that determine its thermal relic abundance can be very different from the dark matter properties today. We investigate this possibility by coupling a dark matter sector to a scalar that undergoes a phase transition after the dark matter freezes out. If the value of Omega_DM h^2 calculated from parameters measured at colliders and by direct and indirect detection experiments does not match the astrophysically observed value, a novel cosmology of this type could provide the explanation. This mechanism also has the potential to account for the "boost factor" required to explain the PAMELA data.Comment: 5 pages; v2: Fixed minor typo, added short discussion of application to PAMELA and appropriate references, results unchange

    Relative importance of crystal field versus bandwidth to the high pressure spin transition in transition metal monoxides

    Full text link
    The crystal field splitting and d bandwidth of the 3d transition metal monoxides MnO, FeO, CoO and NiO are analyzed as a function of pressure within density functional theory. In all four cases the 3d bandwidth is significantly larger than the crystal field splitting over a wide range of compressions. The bandwidth actually increases more as pressure is increased than the crystal field splitting. Therefore the role of increasing bandwidth must be considered in any explanation of a possible spin collapse that these materials may exhibit under pressure.Comment: 7 pages, 4 figure

    Stream Sampling for Frequency Cap Statistics

    Full text link
    Unaggregated data, in streamed or distributed form, is prevalent and come from diverse application domains which include interactions of users with web services and IP traffic. Data elements have {\em keys} (cookies, users, queries) and elements with different keys interleave. Analytics on such data typically utilizes statistics stated in terms of the frequencies of keys. The two most common statistics are {\em distinct}, which is the number of active keys in a specified segment, and {\em sum}, which is the sum of the frequencies of keys in the segment. Both are special cases of {\em cap} statistics, defined as the sum of frequencies {\em capped} by a parameter TT, which are popular in online advertising platforms. Aggregation by key, however, is costly, requiring state proportional to the number of distinct keys, and therefore we are interested in estimating these statistics or more generally, sampling the data, without aggregation. We present a sampling framework for unaggregated data that uses a single pass (for streams) or two passes (for distributed data) and state proportional to the desired sample size. Our design provides the first effective solution for general frequency cap statistics. Our ℓ\ell-capped samples provide estimates with tight statistical guarantees for cap statistics with T=Θ(ℓ)T=\Theta(\ell) and nonnegative unbiased estimates of {\em any} monotone non-decreasing frequency statistics. An added benefit of our unified design is facilitating {\em multi-objective samples}, which provide estimates with statistical guarantees for a specified set of different statistics, using a single, smaller sample.Comment: 21 pages, 4 figures, preliminary version will appear in KDD 201

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    Three results on representations of Mackey Lie algebras

    Full text link
    I. Penkov and V. Serganova have recently introduced, for any non-degenerate pairing W⊗V→CW\otimes V\to\mathbb C of vector spaces, the Lie algebra glM=glM(V,W)\mathfrak{gl}^M=\mathfrak{gl}^M(V,W) consisting of endomorphisms of VV whose duals preserve W⊆V∗W\subseteq V^*. In their work, the category TglM\mathbb{T}_{\mathfrak{gl}^M} of glM\mathfrak{gl}^M-modules which are finite length subquotients of the tensor algebra T(W⊗V)T(W\otimes V) is singled out and studied. In this note we solve three problems posed by these authors concerning the categories TglM\mathbb{T}_{\mathfrak{gl}^M}. Denoting by TV⊗W\mathbb{T}_{V\otimes W} the category with the same objects as TglM\mathbb{T}_{\mathfrak{gl}^M} but regarded as V⊗WV\otimes W-modules, we first show that when WW and VV are paired by dual bases, the functor TglM→TV⊗W\mathbb{T}_{\mathfrak{gl}^M}\to \mathbb{T}_{V\otimes W} taking a module to its largest weight submodule with respect to a sufficiently nice Cartan subalgebra of V⊗WV\otimes W is a tensor equivalence. Secondly, we prove that when WW and VV are countable-dimensional, the objects of TEnd(V)\mathbb{T}_{\mathrm{End}(V)} have finite length as glM\mathfrak{gl}^M-modules. Finally, under the same hypotheses, we compute the socle filtration of a simple object in TEnd(V)\mathbb{T}_{\mathrm{End}(V)} as a glM\mathfrak{gl}^M-module.Comment: 9 page

    Supersymmetric Baryogenesis from Exotic Quark Decays

    Full text link
    In a simple extension of the minimal supersymmetric standard model, out-of-equilibrium decays of TeV scale exotic vector-like squarks may generate the baryon asymmetry of the universe. Baryon number and CP violation are present in the superpotential, so this mechanism does not rely on CP violation in supersymmetry breaking parameters. We discuss phenomenological constraints on the model as well as potential signals for the Large Hadron Collider and electronic dipole moment experiments. A variation on the TeV scale model allows the exotic squarks to be the messengers of gauge mediated supersymmetry breaking.Comment: 28 pages, 7 figures, 2 appendices, v2: typos corrected, results unchange

    Sommerfeld's image method in the calculation of van der Waals forces

    Full text link
    We show how the image method can be used together with a recent method developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals interaction between an atom and a perfectly conducting surface of arbitrary shape. We discuss in detail the case of an atom and a semi- infinite conducting plane. In order to employ the above procedure to this problem it is necessary to use the ingenious image method introduced by Sommerfeld more than one century ago, which is a generalization of the standard procedure. Finally, we briefly discuss other interesting situations that can also be treated by the joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory under the Influence of External Conditions (QFEXT11

    Stochastic methods for solving high-dimensional partial differential equations

    Full text link
    We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms

    Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity

    Full text link
    We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long range order and a homogeneous state with coexistence of superfluidity and antiferromagnetism. We show that the energy density of a hole ehole(x)e_{hole}(x) has a minimum at doping x=xcx=x_c that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is however found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest neighbor hopping {\it t-J} model

    Precision measurement of light shifts at two off-resonant wavelengths in a single trapped Ba+ ion and determination of atomic dipole matrix elements

    Full text link
    We define and measure the ratio (R) of the vector ac-Stark effect (or light shift) in the 6S_1/2 and 5D_3/2 states of a single trapped barium ion to 0.2% accuracy at two different off-resonant wavelengths. We earlier found R = -11.494(13) at 514.531nm and now report the value at 1111.68nm, R = +0.4176(8). These observations together yield a value of the matrix element, previously unknown in the literature. Also, comparison of our results with an ab initio calculation of dynamic polarizability would yield a new test of atomic theory and improve the understanding of atomic structure needed to interpret a proposed atomic parity violation experiment.Comment: 12 pages, 11 figures, in submission to PR
    • …
    corecore